
Software Testing Plan
Version 1
4/1/2022

Rehab Remote

Project Sponsor
Dr. Zachary F. Lerner

BiOMOTUM, Inc.

Faculty Mentor
Felicity H. Escarzaga

Team Members
Kylie Cook

Brandon Roberts
Robert Bednarek

Katarina Marsteller

1

Table of Contents

Table of Contents 1

Introduction 2

Unit Testing 3
Front End 3
Back End 4

Integration Testing 7

Usability 9

Conclusion 11

References 12

2

Introduction
In the United States, 1 in 345 children has cerebral palsy, a set of neuromuscular

disorders effective around birth. Cerebral palsy can reduce the mobility of those that have it.
Around 58.9% of children with cerebral palsy can walk independently, 7.8% walk with
assistance, and 33.3% have limited or no walking ability [1].

The current treatments for cerebral palsy consist of medication, therapy, and surgery.
Biomotum stands within the therapy category by developing a battery-powered ankle
exoskeleton that increases walking speed by 32%, stride length by 21%, and improves efficiency
by 29% [2]. The company has partnered with Rehab Remote to create a web application for users
such as clinics, hospitals, etc. to have the ability to access data about their patients.
Rehab Remote is currently in the software testing phase of the application creation. Software
testing is necessary to ensure that the software works as expected, as well as every individual
component and components that are used together for an expected outcome. In order to
efficiently put the web application through software testing, the team uses two different types of
testing: unit and integration. Unit testing tests individual modules in the application, while
integration testing tests those modules together.

For the unit testing, the team plans to separate front end testing from back end for better
testing organization. The front end testing includes simple code creation to ensure that the correct
information is being retrieved from databases, button functionalities respond correctly, graphical
interfaces are correct and consistent, and there is not too much loading time between button
functionality and data retrieval. Back end testing includes testing inputs for each function stored
in the back end of the application and comparing the outputs the function provides to outputs that
the team expected.

For integration testing, the team plans to do both human testing for the physical front end
section of the Wix site and Python testing for the functions that are primarily back end and deal
with file organization to be stored in the Biomotum Google Drive. The testing plan summarized
above was created due to using Python scripts within AWS cloud servers, JavaScript functions
within Wix, and front end CSS capabilities with Wix’s available elements. Each testing plan
thoroughly tests each of these pieces. The main portion of testing is in the back end due to the
front end HTML and CSS being controlled and monitored by Wix. The portion that makes all
databases and websites work together correctly remains in the back end and is most necessary for
the website to retrieve the correct data for users.

Moving forward, the next sections explain these testing plans in depth, with more insight
on what each test is about, along with different functions tested for unit testing, the modules put
together for integration testing, and how we plan to test the website with end-users.

3

Unit Testing
Software unit testing is the first stage of the software design process life cycle. Unit

testing involves taking apart each of the major components of the project as a whole and
breaking them down into their individual components to be tested with certain conditions. For
example we can compare our web portal to a car. When testing our “car” we will split our car up
into parts such as, wheels, engine, suspension, chassis, and so on. We then take each of those
parts and ensure they meet the conditions they were designed to handle such as the doors
properly closing, the engine delivering power and more. The general intent is to ensure that all
parts of our codebase gets tested individually to ensure that they are all functioning properly. The
goal is to ensure that no major outstanding defects are delivered when presenting our project to
our client. We will be splitting our unit tests into two groups including front end testing and back
end testing.

Front End
The front end of our project is the face of our work, this is what the client and users will

see and interact with at all stages of the interaction. It is vital that we ensure the front end is
thoroughly tested to ensure that the user does not encounter any major errors with the interface.
Our front end is Primarily composed of Wix tools and Javascript that is in charge of interacting
with the buttons to achieve certain functionality. Our testing will consist of testing the
functionality of the Wix widgets, the buttons, the responsiveness, and the functionality of our
javascript code, that is in charge of receiving the data from the buttons. We will start with the
beginning of our front end development functionality by initially testing our homepage.

In order to test the functionality of the front end portion of our site we need to ensure that:

1. The front end correctly references and collects data from our database
2. That when the submit buttons is pressed, the proper database requests are sent
3. The front end button functionality remains reactive and consistent
4. The graphical displays stay consistent error free
5. How fast can we load the information we are looking for?

1. In order to test that the front end is correctly references and collects data from our database we
will create new locations that attempt to reference the data when a button is triggered, IE: if we
click a button that says “retrieve data”, our text box will then be filled with the data that is
requested, whether that be the username, the device id or anything else. This interaction will be
tested in multiple locations to ensure functionality.

2 . Now in order to test that the proper database requests are being sent and correct information is
then processed, we will create a default request template. This request template will be used to

4

send a request to the database, and observe the value that is then sent back to the default request
template. If the data is expected, then we know that the proper requests are being sent.

3. This unit test will ensure that the user experiences no frustration or difficulty when interacting
with the buttons on our website. We will need to ensure that the buttons remain functional and
also that the buttons functions do not deviate from the guidelines. Our testing method for this
will consist of creating new locations that react when the specific button is clicked. When the
button is clicked the reactions should remain consistent and will be proven to do so by having
statements that react accordingly when the interaction happens.

4. The process for going about testing our graphical displays and ensuring that they remain
consistent and error free is the most intensive part of our unit testing. In order to properly test our
display we will create a new module that exists with the sole purpose of receiving data and then
creating a display. We will ensure that the display remains consistent and error free by inputting
many different data templates, then ensuring that the display remains consistent with the data that
is being sent and also ensuring the display formatting does not deviate.

5. Finally, in order to test how fast we can retrieve the information that we are looking for we
will have to set up a simple module for timing. This module will be rather simple, the module
will encompass our previous code that retrieves, parses and then outputs the data. First we start
the timer and then after the retrieving, parsing and output is done we will retrieve the time,
ensuring it remains consistent and fast. We will also conduct this test with multiple data sets to
ensure reliability.

Back End
The back end of this project is where all of the major connections exist so we need to

ensure that the back end functions are working properly so that correct data is displayed to the
user. This is where all important calculations and functions are stored that allow for the front end
to display accurate statistics and graphs. The back end will be tested by running and testing each
individual function from the four back end scripts we have in our project as well as testing the
databases to ensure they are updating correctly.

More specifically, in order to test the our back end portion of our site we need to ensure that:
1. All individual functions within the “google_sheets.jsw” script are working properly
2. All individual functions within the “googledrive.js” script are working properly
3. All individual functions within the “other.jsw” script are working properly
4. All individual functions within the “s3.jsw” script are working properly
5. The “Members” Content Manager database is updating and storing user data correctly

5

Table 1: List of Back End Functions

Script Function Input Output

google_sheets.jsw getData Name of sheet Spreadsheet values

googledrive.js uploadFileByUrl folderId, url, name,
description

Google drive file data

googledrive.js getFileById fileId, fields File’s metadata

googledrive.js listFiles query, fields Metadata of list of
files

googledrive.js deleteFileById fileId Status of deletion

googledrive.js createPermissions fileId, permissionInfo Data from permission

other.jsw getId email Id associated to email

s3.jsw getExoList N/A List of exoskeletons

s3.jsw getAccessibleData List of exoskeletons Dictionary for each
exoskeleton

s3.jsw downloadFile File key string Url of the
downloaded file

As shown in Table 1, we will test the getData function from the “google_sheets.jsw” back
end script by inputting an active google sheet. From there we will make sure that the values from
that spreadsheet are outputted correctly or a null is returned if the google sheet is inactive.

In the “googledrive.js” script we will test multiple individual functions. The first one
being uploadFileByUrl where a folderId, url, name, and description will be provided as inputs to
check that the url provided is going to the correct folder specified in the google drive. The
getByFileId function will be tested by inputting a fileId and metadata fields to ensure the correct
metadata associated with that file specified is returned. The listFiles function will take in a query
and fields as input where we will run it multiple times to ensure that the function is querying the
correct metadata as specified from the list of files in the google drive. The deleteFileById
function will simply take a fileId as the parameter and permanently delete the file, bypassing the
trash bin so we will ensure that files to be deleted are only deleted when the user has organizer
permissions from the google drive. The last function from the “googledrive.js” script is
createPermissions function where a fileId and permissionInfo will be used as input to create
permission for that file where we will ensure it gives the user file/folder access based off the
permission information specified.

6

Within the “other.jsw” back end script, we have one main function called getId that
retrieves the unique user id from the inputted email address. This function simply looks up the
email address provided as input from the “Private Members” database and returns the
corresponding unique id associated with that user so we will test this function to ensure the
resulting id returned matches the same id in the database or false is returned if the email does not
exist.

The last back end script is “s3.jsw” and the first function is getExoList which doesn’t
have an input and simply returns a list of all available exoskeletons. We will run this function
and compare the resulting list to the database to ensure that all of the exoskeletons from the
database have been outputted. The getAccessibleData function takes the getExoList function a
step further by taking the list of exoskeletons as input and organizing them into a dictionary so
we will simply check that all of the available exoskeletons are in the dictionary and ensure the
format of the dictionary is correct. The format to check for is starting from the exoskeleton, then
the user of that exoskeleton, then the dates it was active and the specific trials for each date. The
last function that we will be unit testing is the downloadFile function which takes a file key
string as input and returns the url of the downloadable file. We will test to make sure the url is
valid and able to download the file based on a valid key string or not do anything if the key string
is invalid.

7

Integration Testing
Integration testing requires testing modules that work together at any point of application

use. It is necessary to make sure that the application modules do not have any errors while
working together, and that each module interacts/reacts in the appropriate way when affected by
another module. While the team determined which modules should be tested and how, we based
it on the characteristics above. Modules in the project that work with other modules were chosen
and will be tested by triggering every interaction possible between the modules and watching for
errors and/or the correct outcomes.

Some modules created during the time given for this project are not testable for the
application, such as the Python script that organizes and transfers the Biomotum data files to the
Biomotum Google Drive for employees to access and better understand. Instead, the script
contains code that creates change and error logs to make sure all files are placed in the correct
area and that all errors are tracked so they can be fixed. Most of the functions used within the
script work together and can be tested using Python’s library unittest. While unittest has a name
that seems to be unit test specific, the library can be used for integration testing practices as well.
For every function that uses a different function within the code, a specific input to the first
function used is set as well as the expected outcome. Then, the set input is used as the first
function’s parameter, and the returned data is compared to the expected outcome. If they are the
same, the integration test is successful, if not, it fails. This testing will be done for the Python
script that connects to Google Drive, as well as the Python script that creates Biomotum
exoskeleton and patient data summaries stored in the Biomotum Google Drive.

As for functions and modules implemented within the Wix website itself through the
JavaScript language, a similar process as explained above will be used to go through integration
testing. Although, instead of testing through code (like the Python unittest library), the tests will
be through human interaction of the website.

To start off the testing, the Google Sheet involving the global summary of all
exoskeletons and users will be manually changed to insure that changes are made on the website,
since the Google Sheet is connected to the site and should automatically be updated when there
are any changes made. Then, the sign up function is tested to make sure that the new user’s
company name shows up in the admin’s dashboard, where the admin can assign and unassign
exoskeletons per user. Once the user is included in the dashboard, the user’s patient page is tested
by first making sure that the user has no access to any exoskeletons. Then, exoskeletons will be
added to the user’s patient page and checked by going to the page and going through each exo,
user, and data sheet provided. The removal of access to exoskeletons will be tested by removing
a few, and then all exoskeletons previously granted access to the user, and the patient profile of

8

the user will be examined to make sure that there are no exoskeletons or users to access once
again.

Lastly, the connection to each exoskeleton, user, and csv summary commences. This is in
the same realm as the testing mentioned above, where access to certain exoskeletons exist.
Although, this testing is to make sure that the information within each summary Google Sheet
for the exoskeletons and users are correct. To do so, about 10 exoskeletons and users will be
randomly chosen to compare and contrast the summary graph created within the Wix site to the
summary sheets exported to the Biomotum Google Drive. The downloadable CSV (Comma
Separated Values) file will also be compared to the file sitting within the Biomotum AWS
account. The discussed tests can be understood through the table below:

Table 2: Integration Testing Modules

Modules Input Output

Google Drive AWS
Integration Script

AWS Connection Information
Google Drive Connection

Information

Exo Folders
User Folders
Date Folders
CSV Files

Google Drive AWS
Summaries Script

AWS Connection Information
Google Drive Connection

Information

Google Sheet Summaries for:
Exo Folders
User Folders
Date Folders

Google Sheet Global
Summary

Different Data:
Sum of Steps

Sum of Steps Per Month

Wix Font Page Global Data
Changes

Sign Up and Admin
Dashboard Connection

Name
Company Name

Password

Company Name in Admin
Dashboard

Ability to Assign
Exoskeletons to Company

Patient Page and Admin
Dashboard Connection

Given Exoskeleton Access
Removed Exoskeleton Access

User Ability to See Given
Exoskeleton Access, Users,

and Files

Google Sheet AWS
Summaries and Patient Page

Given Exo, User, and CSV
Files

Graphs for Each Exo, User,
and File

AWS Account and Wix
Download

AWS URL to CSV Chosen A Download of the CSV

9

Usability
Usability testing is very important when it comes to making the client happy with the

software being delivered. It focuses on the interactions that end users will have with the software
system and the goal is to ensure that users are able to effectively use all of the functionality
provided by the software. This is where we get feedback from the users to make any necessary
user interface changes that will contribute to the ease of use of the software.

The web portal that we have developed tracks data from exoskeleton prototypes that are
still being tested by Biomotum employees. Therefore, the usability testing will be conducted
among multiple Biomotum employees to get their opinions on the design and usability of the
web portal. This is due to the exoskeleton being in the developmental phase and has not gone out
to clinics. The primary use cases that will be examined will be the end user and administrators.
The end users will be Biomotum employees who will be given the role of a clinic working with
the exoskeleton. The administrative controls provided through Wix will be given to a Biomotum
administrator who has permissions to make changes to the accessible exoskeletons. In addition to
the mentioned use cases, we will be developing a survey for both cases to help us understand
exactly what the experience was.

The surveys that will be given to the participating employees will be split into two
categories for both of our cases. The first is the clinic survey which will focus on the account
creation, viewing of data, and the downloading of the CSV files from the portal. The second
survey will be for administrators which will be the individuals working in Biomotum that
approve accounts and edit the exoskeletons available to particular “clinics”. These surveys will
cover design choices for the website, aesthetic and overall look of the portal, the ease of finding
said features, the understanding of the features available for both parties, and overall
functionality of the features.

We chose surveys as our medium of testing because it allows for mass feedback on what
was bad for both use cases. The regime will have two groups of students for both use cases with
both unable to interact with each other. They will be designated as administrators and clinics.
The clinics will be given minimal instructions on how to create a new account under the
company name of “Company Trial_Clinic_clinic number” and navigate to download a particular
CSV file with a naming scheme of “Trial_Clinic_clinic number”- the clinic number will be
provided upon the start of the trial. Likewise the administration will be given minimal
instructions to add the device with the desired CSV for the clinic user and then take a screenshot
of the device in the accessible list of the “Trial_Clinic_admin number” - the admin number will
be provided upon the start of the trial and match the clinic number. After both tasks are
completed, the users will be given the survey for the clinic and the administrator accordingly.

10

The survey results will provide us with lots of detailed feedback regarding each section of the
use cases.

It will include tasks to complete with little instruction such as:
1. Sign up for an account with the company name: CompanyTrial_Clinic_clinic number
2. Once approved sign in to your new account
3. Select an exoskeleton, user, and trial

Some of the follow up questions that will be asked to receive detailed feedback will be in the
form of 1-10 scale and short response answers:

1. On a scale of 1-10, how easy did you find creating an account was?
2. How did you feel about the layout and design of the sign in page?
3. On a scale of 1-10 how easy was it to navigate to the exoskeleton selection dropdown?
4. Do you have any suggestions for improvements to the site?

A very similar process will be followed for the administration controls so that we have
feedback for both sides of the web portal. Once we gather all of these surveys, they will be
carefully reviewed one by one and a list of improvements that should be focused on will be
compliled. After that, we will follow up with the client to display the revised web portal and
ensure we did not miss any crucial interface improvements. This usability testing will help to
ensure maximum client satisfaction with the entire web portal.

11

Conclusion
Throughout this software testing plan, we have detailed the ideas and roadmap for testing

and monitoring the performance of our software tests and provide in-depth examples of the tests
that are to be performed. Together as a team, we broke down the functionality of our application
developed to help our client, Dr. Zachary Lerner and ensure that the teaching unit of code
performs as expected while also remaining reliable and sturdy. Every single one of our tests
exists to uncover potential unexpected behavior and errors that other types of tests can not easily
detect, this will again ensure that all ground is covered and verify the validity of our code.

Unit tests ensure that each piece of code is working as expected. This helps us find errors
in individual components by being able to break down our code and test it part by part. We break
down our code and then test it for a variety of conditions, whether that be correct output or input,
or correct calculations occurring inside the code itself. Furthermore, Integration testing then
ensures that components are working together as a whole and communicating correctly with one
another, this is done by creating checkpoints along the way, and ensuring that those checkpoints
are meeting the conditions that we require. Now onwards to our usability testing, which is key to
making sure that our end users can provide feedback on various aspects of our application that
need to be improved through their eyes.

Using the results of our testing (Unit testing, usability testing, and integration testing), we
will ensure that our product is up to par. Given the introduction of unforeseen problems, we will
then make changes to remedy these issues and improve the software quality and user experience.
With our rigorous testing, we will be sure that our software functions work cohesively and more
importantly our web application is working correctly and easy to use. This will allow future
clinics to understand their information in an immediate and proper manner.

12

References
[1] Centers for Disease Control and Prevention. (2020, December 31). Data and statistics for

Cerebral Palsy. Centers for Disease Control and Prevention. Retrieved November 5, 2021,
from https://www.cdc.gov/ncbddd/cp/data.html.

[2] Science & Outcomes. Biomotum. (n.d.). Retrieved November 5, 2021, from
https://www.biomotum.com/science.

